



### NORTH SYDNEY BOYS HIGH SCHOOL

# 2009 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

## **Mathematics**

#### **General Instructions**

- Reading time 5 minutes
- Working time 3 hours
- Write on one side of the paper (with lines) in the booklet provided
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in every question
- Each new question is to be started on a **new page**.

| _        | Attompt | all | auactiona |
|----------|---------|-----|-----------|
| <b>e</b> | Attempt | all | auestions |

#### **Class Teacher:**

(Please tick or highlight)

- O Mr Rezcallah
- O Mr Ireland
- O Mr Lowe
- O Mr Trenwith

| ( )    | ) |   |  |   |  |   |   |   |   |  |   |  |   |   |
|--------|---|---|--|---|--|---|---|---|---|--|---|--|---|---|
| $\sim$ |   | • |  | ٠ |  | • | ٠ | ٠ | ٠ |  | ٠ |  | • | 1 |

| Cti | ıder | \+ I | <b>NI.</b> . | m            | hor |
|-----|------|------|--------------|--------------|-----|
| OIL | laer | 11 1 | NU           | $\mathbf{H}$ | Der |

(To be used by the exam markers only.)

| Question<br>No | 1  | 2  | 3  | 4           | 5  | 6  | 7  | 8  | 9  | 10 | Total | Total |
|----------------|----|----|----|-------------|----|----|----|----|----|----|-------|-------|
| Mark           | 12 | 12 | 12 | <del></del> | 12 | 12 | 12 | 12 | 12 | 12 | 120   | 100   |

(a) Evaluate 
$$\frac{3.24^2 - 2.1^2}{\sqrt{36 + 2.1}}$$
 correct to 3 significant figures.

2

(b) Rationalise the denominator of 
$$\frac{5}{3-\sqrt{7}}$$

2

(c) Solve 
$$\frac{1}{3}(x-2) = \frac{1}{12}(1-3x)+4$$
.

2

(d) If 
$$\tan \theta = \frac{7}{8}$$
 and  $\cos \theta < 0$ , find the exact value of  $\csc \theta$ 

2

(e) Solve 
$$|15-4x| \le 3$$

2

(f) Find the sum of the first 15 terms of the series

$$1+3+3^2+3^3+3^4+\dots$$

(a) Differentiate with respect to x:

(i) 
$$(2x^2+1)^8$$

2

(ii) 
$$x^2 \ln x$$

2

(iii) 
$$\frac{\sin x}{e^x}$$

2

(b) Find: 
$$\int (\cos 2x + e^{5x}) dx$$

2

(c) Evaluate 
$$\int_{0}^{1} \frac{3}{x+1} dx$$

2

(d) Solve 
$$2\sin\theta + 1 = 0$$
 for  $0 \le \theta \le 2\pi$ 

(a) In the quadrilateral ABCD the coordinates of the points A and B are (-2, 4) and (4, 1) respectively.

The equation of the line DC is x + 2y + 2 = 0.



NOT TO SCALE

- (i) Find the gradients of AB and DC. Hence, explain why the quadrilateral ABCD is a trapezium.
- (ii) Find the length of AB in exact form.
- (iii) The line BC is parallel to the y axis, find the coordinates of point C. 1
- (iv) Find the perpendicular distance from A to the line DC. 2
- (v) If the length of DC is  $7\sqrt{5}$  units, find the area of the trapezium ABCD.
- (b) An infinite geometric series has a limiting sum of 3. If the first term of this series is equal to the common ratio, find the first term of this series.

Question 4 (12 marks) Start a NEW page.

Marks

- (a) Given that  $\log_a m = 4.5$  and  $\log_a m = 1.5$ , find the value of:
  - (i)  $\log_a \left(\frac{n}{m}\right)$

1

(ii)  $\log_a(mn)^2$ 

2

(b) Find the equation of the normal to the curve  $y = \log_e x - 1$  at the point (e, 0).

(c)



The diagram above shows a triangle ACE. AE is parallel to BD, AC = 16 cm, CD = 12 cm and DE = 6 cm.

(i) Prove that  $\triangle ACE$  is similar to  $\triangle BCD$ .

2

(ii) Hence, or otherwise, find the length of AB.

2

- (d) Consider the parabola  $y^2 = 8x + 16$ .
  - (i) Find the coordinates of the vertex.

2

(ii) Find the equation of the directrix.

(a) NOT TO SCALE C

Mona left home (**H**) and travelled for 24 km to **B** on a bearing of  $300^o T$ . She then travelled for 40 km to **C** on a bearing of  $60^o T$ .

Copy the diagram in your solution booklet.

- (i) Show that  $\angle CBH = 60^{\circ}$ .
- (ii) Use the Cosine Rule to show that the length of CH=34.87 km. 2
- (iii) Find the bearing of **H** from **C**. Leave your answer to the nearest minute.
- (b) David was training for his school marathon. On the first day, he ran 1250m, on the second day he ran 1340m, and on each of the following days the distances he ran continued to increase by the same amount.
- (i) What distance did he run on the 10<sup>th</sup> day?
- (ii) What is the total distance he ran in the first 10 days?
- (iii) On which day did the distance he ran first exceed 2.5km?
- (c) Find the values of k for which the quadratic equation  $2x^2 kx + 5 = 0$  has real roots.

4

- (a) Consider the curve  $y = x^3 6x^2 + 5$ 
  - (i) Determine the coordinates of any stationary points and determine their nature.
  - (ii) Find the coordinates of the point of inflexion.
  - (iii) Sketch the curve  $y = x^3 6x^2 + 5$
  - (iv) For what values of x is the curve  $y = x^3 6x^2 + 5$  concave down? 1
- (b) The displacement x metres of a particle moving in a straight line at time t seconds is given by  $x = 2t 4 \log_e(2t + 1)$ 
  - (i) Find the initial velocity of the particle. 2
  - (ii) Show that the acceleration of the particle is always positive. 1

(a)



The graph above can be represented by an equation in the form  $y = a \cos nx$ . Find the values of a and n.

2

(b) A circle has radius 12 cm. Find the area of a sector of this circle that subtends an angle at the centre of  $\frac{4\pi}{3}$ .

2

(c) Is the following series an arithmetic or geometric progression?

$$ln(x) + ln(x^2) + ln(x^3) + ln(x^4) + \dots$$
  
Justify your answer.

2

(d) Solve the equation  $9^x - 10(3^x) + 9 = 0$ 

3

(e) (i) Differentiate  $sin(x^2)$ 

1

(ii) Use this result to find the exact area bounded by  $y = x\cos(x^2)$ , the x-axis and the lines x = 0 and x = 1.

#### Question 8 (12 marks) Start a NEW page.

Marks

(a) The volume V cm<sup>3</sup> of a balloon is increasing such that its volume at any time t seconds is given by  $V = \frac{\pi t^3}{3} - \frac{\pi t^2}{6} + \frac{1}{2}$ . Find the rate at which the volume is increasing when t = 2 seconds.





The graph below shows the cross-section of the prism. The top of the mud is given by the function  $y=20+4\cos\left(\frac{x}{2}\right)$  and the top of the gold is shown by the curve C.



- (i) Find, by integration, the total area of the cross-section, i.e. the area of both the mud and gold.
- (ii) Using Simpson's Rule with the five function values shown on the graph,
  Find an estimate for the area of the cross-section of the gold.
- (iii) Find the volume of the mud.
- (c) A coin is tossed four times. Find the probability that:
  - (i) the first three tosses are heads
  - (ii) there are at least three heads in the four tosses.

9

(a) A population of 100 birds was introduced at the start of 2004, on an enclosed reserve where no natural predators exist. Two years later the population had grown to 312.

The equation that is believed to best model this growth process is given by  $N(t) = N_o e^{kt}$ , where N(t) represents the number of birds present at time t, and t is the number of years since the introduction of the birds on the reserve.

(i) What does  $N_o$  represent? State its value.

2

(ii) Show that k = 0.5689 (to 4 decimal places).

2

(iii) Find the time it takes for the population to double.

- 2
- (iv) Find the number of birds that will be on the reserve at the end of 2009.
- 1
- (b) If  $\alpha, \beta$  are the roots of  $3x^2 4x 7 = 0$ , find the value of  $\alpha^2 + \beta^2$ .

(c)



A mould for a vase is formed by rotating that part of the curve  $y = \log_e x$  between y = 0 and y = 2 about the y axis.

Find the volume of the mould. Leave your answer in simplest exact form.

(a) The diagram shows a sector with angle  $\theta$  at the centre and radius r cm.

The arc length is  $6\pi$  cm.



Calculate the area of the shaded minor segment when  $\theta = \frac{3\pi}{4}$ .

3

(b) The Logs are a baseball team and the Sectors are a soccer team. A total of 18 people are members of one or the other or both teams. The soccer team has 14 members and the baseball team has 10 members. A player is selected at random from the baseball team.

What is the probability that the player is **not** in the soccer team?

2

(c) A piece of paper in the shape of an equilateral triangle with edge length 20cm is to be used to make an open-ended box. Quadrilateral shapes are cut out of the comers and the sides folded up in the manner shown.





- (i) Show that the side of the equilateral triangle base is  $20-2h\sqrt{3}$
- (ii) Prove that the volume of the box is  $V = h\sqrt{3}(10 h\sqrt{3})^2$ .
- (iii) Find the height of the box that will produce the maximum volume. 3

#### END OF PAPER

| Solutions                                                                                                                                                                                     | Marks/Comments                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Question 1 (Marked by Mr Lowe)                                                                                                                                                                | (a)                                                                                                          |
| (a) $\frac{3\cdot24^2-2\cdot1^2}{\sqrt{36+2\cdot1}} = 0.986242288$                                                                                                                            | √√ for correct<br>rounded answer                                                                             |
| $ b) \frac{5}{3-\sqrt{7}} = \frac{5}{3-\sqrt{7}} \times \frac{3+\sqrt{7}}{3+\sqrt{7}} = \frac{5(3+\sqrt{7})}{2} $                                                                             | (b)<br>✓ for correct method<br>✓ for correct answer                                                          |
| (c) $\frac{1}{3}(x-2) = \frac{1}{12}(1-3x)+4$                                                                                                                                                 | (c)                                                                                                          |
| 4(x-2) = 1-3x+48 $4x-8 = 49-3x$ $7x = 57$                                                                                                                                                     | √for multiplying every<br>term by 12 (if that is not<br>done no marks)                                       |
| $x=8\frac{1}{7}$                                                                                                                                                                              | √ for correct answer                                                                                         |
| (d) $x^{2} = 7^{2} + 8^{2}  \text{Since}$ $= 49 + 64  \tan \theta = \frac{7}{8} \text{ and } \cos \theta < 0$ $x = 113  3^{rd} \text{ Quadrant } \therefore \csc \theta < 0$ $x = \sqrt{113}$ | (d)  ✓ for correct x                                                                                         |
| $\theta \qquad \therefore cosec \ \theta = -\frac{\sqrt{113}}{7}$                                                                                                                             | ✓ for correct answer                                                                                         |
|                                                                                                                                                                                               | (e)                                                                                                          |
| (e) $ 15-4x  \le 3$<br>$-3 \le 15-4x \le 3$<br>$-18 \le -4x \le -12$<br>$3 \le x \le 4.5$<br>$x \ge 3$ and $x \le 4\frac{1}{2}$                                                               | 2 Marks for correct<br>answer<br>(If 2 correct inequalities<br>written, then the word<br>AND should be used) |
| (f) G.S of a=1 and r=3 $S_{15} = \frac{1(3^{15}-1)}{(3-1)}$ $S_{15} = 7174453$                                                                                                                | ✓ for correct formula                                                                                        |
|                                                                                                                                                                                               | ✓ for correct answer                                                                                         |
|                                                                                                                                                                                               | 1                                                                                                            |

| Solutions                                                                                                                       | Marks/Comments                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Question 2 (Marked by Mr Lowe)                                                                                                  |                                                                                    |
| (a) (i) $\frac{d}{dx}(2x^2+1)^8$                                                                                                | (i)                                                                                |
| $\frac{dx}{dx} = \frac{dx}{1} + 1, \text{ then }$ $\frac{d}{dx} (2x^2 + 1)^8 = \frac{d}{dt} u^8 \times \frac{d}{dx} (2x^2 + 1)$ | ✓ for $8(2x^2+1)^7$ or correct start                                               |
| $dx = \frac{dx}{x^2 + 1}$ $= 8(2x^2 + 1)^{\frac{1}{2}} \times 4x$ $= 32x(2x^2 + 1)^{\frac{1}{2}}$                               | ✓ for correct answer                                                               |
| - 00. (2. 4.2)                                                                                                                  | (ii)                                                                               |
| (ii) $\frac{d}{dx}x^2 \ln x = x^2 \frac{1}{x} + \ln x \times 2x = x(1 + 2\ln x)$                                                | √ for product rule                                                                 |
| dx x (iii)                                                                                                                      | ✓ for simplification.                                                              |
| $\frac{d}{dx}\left[\frac{\sin x}{e^x}\right] = \frac{(e^x)(\cos x) - (\sin x)(e^x)}{(e^x)^2}$                                   | (iii)                                                                              |
| $=\frac{e^{x}\left[\cos x-\sin x\right]}{\left(e^{x}\right)^{2}}$                                                               | ✓ for quotient rule or<br>correct product rule if<br>changed                       |
| $=\frac{\left[\cos x-\sin x\right]}{e^x}$                                                                                       | √ for correct answer                                                               |
| (b) $\frac{\sin 2x}{2} + \frac{e^{5x}}{5} + C$                                                                                  | (b) ✓ ✓ 1 mark for each part including +C                                          |
| (c) $\int_0^1 \frac{3}{x+1} dx = \left[ 3\ln(x+1) \right]_0^1 = 3\ln 2 - 3\ln 1 = 3\ln 2$                                       | (c) √ for correct integratio                                                       |
| .0 x+1                                                                                                                          | √for correct answer                                                                |
| (d) $2\sin\theta + 1 = 0$ $2\sin\theta = -1$ $\sin\theta = -\frac{1}{2}$ $\theta = \frac{7\pi}{6}, \frac{11\pi}{6}$             | (d)  Correct rearrangement of trigonometric equation and one correct solution.  OR |

## VSBH 2009

2UNIT TRAIL

| Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Marks/Comments                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Question 3 (Marked by Mr Rezcallah)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                  |
| (a) (i) $m_{AB} = \frac{1-4}{4+2} - \frac{3}{6} - \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (i)  √ for correct m <sub>DC</sub> √ for correct m <sub>AB</sub> |
| $m_{DC}=-rac{A}{B}=-rac{1}{2}=m_{AB}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ·                                                                |
| one pair of opposite sides are parallel, and so $ABCD$ is a trapezium.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ✓ for correct reason                                             |
| (ii) $d_{AB} = \sqrt{(4+2)^2 + (1-4)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (ii)  for correct substituted formula                            |
| $=\sqrt{36+9}=\sqrt{45}=3\sqrt{5}$ units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ✓ for correct exact answer                                       |
| (iii) At $C$ , $\alpha = 4$ . $\alpha + 2y \pm 2 \Big _{x=4} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (iii)                                                            |
| $\frac{3}{4}$ 年 $\frac{3}{2}$ | ✓ for correct answer                                             |
| (iv) $d_1 = \frac{ 1(-2) + 2(4) + 2 }{\sqrt{12 + 2^2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (iv)  for correct substituted formula                            |
| $=\frac{ 8 }{\sqrt{5}}=\frac{8\sqrt{5}}{5}$ units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ✓ for correct answer<br>(wrong formula no marks)                 |
| N.B: Students who find the intersection of the Perp. should get $x=18/5$ , $y=4/5$ to get the first mark, then the second mark is for the correct answer. (v)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (v)<br>✓ for correct area                                        |
| $A = \frac{1}{2} \times \frac{8}{\sqrt{5}} \times \left(3\sqrt{5} + 7\sqrt{5}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | √for correct answer                                              |
| $=10\sqrt{5}\times\frac{4}{\sqrt{5}}=40\mathrm{units}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (ь)                                                              |
| $S = \frac{a}{1 - a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | √for correct method                                              |
| $\Gamma = r$ When $a = r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                  |
| $3 = \frac{a}{1 - a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | √for correct answer                                              |
| 3 - 3a = a $4u = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                  |





| Question 7 (Marked by Mr Lowe)                                                            |                                                    |
|-------------------------------------------------------------------------------------------|----------------------------------------------------|
| (a) From graph $a=2$                                                                      | (a)                                                |
| Period = $\frac{4\pi}{3}$                                                                 | ✓ correct value of a                               |
| ,                                                                                         |                                                    |
| $Period = \frac{2\pi}{n}$                                                                 | ·                                                  |
| $\frac{2\pi}{n} = \frac{4\pi}{3}$                                                         |                                                    |
| $n = \frac{3}{2}$                                                                         | ✓correct value of n                                |
| (b) $A = \frac{1}{2}r^2\theta = \frac{1}{2}(12^2)\frac{4\pi}{3}$                          | (b) √correct method                                |
| $A = 96\pi \text{ cm}^2 = 301.59 \text{ cm}^2$                                            | ✓ correct answer (exact or                         |
|                                                                                           | rounded)                                           |
| (c) Test for GP:                                                                          | (c)                                                |
| $\frac{\ln x^2}{\ln x} = \frac{2 \ln x}{\ln x} = 2$                                       | ✓ for AP                                           |
| ln x 3 3 ln x 3                                                                           | · IOI AF                                           |
| $\frac{\ln x^3}{\ln x^2} = \frac{3\ln x}{2\ln x} = \frac{3}{2} : \text{not GP}$           |                                                    |
| Test for $AP$ : showing $d = \ln x$                                                       | ✓ for justification of why                         |
| $\ln x^2 - \ln x = 2 \ln x - \ln x = \ln x$                                               | AP showing the common<br>difference clearly        |
| $\ln x^3 - \ln x^2 = 3 \ln x - 2 \ln x = \ln x$                                           |                                                    |
| .: AP                                                                                     |                                                    |
| (d)                                                                                       |                                                    |
| $9^x - 10(3^x) + 9 = 0$                                                                   | (d)                                                |
| $3^{2x} - 10(3^x) + 9 = 0$                                                                |                                                    |
| $(3^x)^2 - 10(3^x) + 9 = 0$                                                               | ✓ for quadratic equation,                          |
| $v^2 - 10v + 9 = 0$ where $v = 3^x$                                                       | vior quadratic equation,                           |
| $(\nu-9)(\nu-1)=0$                                                                        | for correctly factoring                            |
| $v = 3^{x} = 9 \rightarrow x = 2$                                                         | and getting one value of x  ✓ for other value of x |
| $v=3^{x}=1\rightarrow x=0$                                                                | (2) (2) (5                                         |
| $(e)  (i) \ 2x \cos(x^2)$                                                                 | (e) (i) ✓ for correct<br>derivative                |
| (ii) $A = \int_{0}^{1} x \cos(x^{2}) dx = \frac{1}{2} \int_{0}^{1} 2x \cos(x^{2}) dx$     | (ii) ✓ for correct area integral                   |
| $= \frac{1}{2} \left[ \sin(x^2) \right]_0^1 = \frac{1}{2} \left[ \sin 1 - \sin 0 \right]$ |                                                    |
| $= \frac{1}{2}[\sin I] = 0.42 \ u^2$                                                      | ✓ for correct answer                               |
|                                                                                           | 1                                                  |

Marks/Comments

Solutions





| Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                          | Marks/Comments                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Solutions  Ouestion 9 (Marked by Mr Rezcallah)  (a) (i) $N_0$ is the initial value $N_0 = 100$ (ii) $N(t) = N_0 e^{kt} \Rightarrow 312 = 100e^{2k} \Rightarrow 78/25 = 3.12 = e^{2k}$ $ln3.12 = 2k \Rightarrow k = (ln3.12)/2$ $\Rightarrow k = 0.5689$ (iii) $200 = 100e^{0.5689165t} \Rightarrow 2 = e^{0.5689165t}$ $t = ln2/(0.5689165) = 1.218 \text{ years or } 14.4 \text{ months}$ (iv) $n=6$ N= $100e^{(ln3.12)(3)} = 3037 \text{ birds}$ | Marks/Comments  (a) (i)  √ for stating initial value  √ for 100  (ii) ✓ for equation  ✓ k = (I <sub>n</sub> 3.12)/2  (iii) ✓ for correct doubling of population  √ for correct answer  (3.22 gets no marks)  (iv) ✓ for 3037 only |
| (b) $\alpha + \beta = -\frac{b}{a} = -\frac{-4}{3} = \frac{4}{3}$<br>$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \left(\frac{-4}{3}\right)^2 - 2\left(\frac{-7}{3}\right) = \frac{58}{9}$<br>(c) $x = e^y$<br>$V = \pi \int_0^2 e^{2y} dy$<br>$= \frac{\pi}{2} \left[e^{2y}\right]_0^2$                                                                                                                                              | (b)  ✓ for correct method  ✓ for correct answer  (c)  ✓ correct volume integral  ✓ correct integration                                                                                                                            |
| $= \frac{\pi}{2} \left[ e^4 - e^0 \right]$ $= \frac{\pi}{2} \left( e^4 - 1 \right) \text{ units }^3$                                                                                                                                                                                                                                                                                                                                               | √for correct answer                                                                                                                                                                                                               |

| Solutions                                                                                       | Marks/Comments                               |
|-------------------------------------------------------------------------------------------------|----------------------------------------------|
| Ouestion 10 (Marked by Mr Trenwith)                                                             | (a)                                          |
| (a) 🗢                                                                                           |                                              |
| Area of the minor segment:                                                                      | √ for correct r                              |
| $\theta = \frac{3\pi}{4}$                                                                       |                                              |
| $6\pi = r \times \frac{3\pi}{4}$                                                                |                                              |
| r = 8cm                                                                                         | √for correct method                          |
| 1 2/a ol                                                                                        |                                              |
| $A = \frac{1}{2}\tau^2(\theta - \sin\theta)\Big _{\theta = \frac{3\pi}{4}}$                     |                                              |
| $=\frac{1}{2}8^2\left(\frac{3\pi}{4}-\sin\frac{3\pi}{4}\right)$                                 | √for correct answer                          |
| $= 32 \left( \frac{3\pi}{4} - \frac{1}{\sqrt{2}} \right) \text{ cm}^2$                          | (accept 52.77 cm <sup>2</sup> )              |
|                                                                                                 | (accept 52.77 cm <sup>-</sup> )              |
| (b)                                                                                             | (b) √ for correct Venn                       |
|                                                                                                 | diagram                                      |
| 4 6 8                                                                                           |                                              |
| ( ' ( ' ) ' )                                                                                   |                                              |
| \                                                                                               | √ for correct answer                         |
| $P = \frac{4}{10} = 0.4$                                                                        | (✓✓ for correct answer                       |
| (c) (i)                                                                                         | (c)                                          |
| h 30                                                                                            | (i)                                          |
|                                                                                                 |                                              |
| •                                                                                               | √√ for the method of                         |
| $\tan 30 = \frac{h}{x}  \therefore x = \frac{h}{\tan 30} = \frac{h}{\frac{1}{\pi}} = h\sqrt{3}$ | showing the side                             |
| . √3                                                                                            |                                              |
| $\therefore side = 20 - 2h\sqrt{3}$                                                             |                                              |
| (i) (ii) grea = 1 (20, 21/2)(20, 21/2) : co                                                     | (ii)                                         |
| (ii) (ii) $area = \frac{1}{2} (20 - 2h\sqrt{3})(20 - 2h\sqrt{3}) \sin 60$                       |                                              |
| $1 \sim \sqrt{3}$                                                                               |                                              |
| $=\frac{1}{2}\left(400-80h\sqrt{3}+12h^2\right)\frac{\sqrt{3}}{2}$                              | √√ for a complete<br>derivation of the given |
| $= (100 - 20h\sqrt{3} + 3h^2)\sqrt{3}$                                                          | expression                                   |
| $= \left(10 - h\sqrt{3}\right)^2 \sqrt{3}$                                                      | ^                                            |
| ? -                                                                                             |                                              |
| $Volume = h(10 - h\sqrt{3})^2 \sqrt{3}$                                                         |                                              |
|                                                                                                 |                                              |

